Mutations in Saccharomyces cerevisiae gene SIR2 can have differential effects on in vivo silencing phenotypes and in vitro histone deacetylation activity.
نویسندگان
چکیده
The yeast SIR2 gene and many of its homologs have been identified as NAD(+)-dependent histone deacetylases. To get a broader view of the relationship between the histone deacetylase activity of Sir2p and its in vivo functions we have mutated eight highly conserved residues in the core domain of SIR2. These mutations have a range of effects on the ability of Sir2p to deacetylate histones in vitro and to silence genes at the telomeres and HM loci. Interestingly, there is not a direct correlation between the in vitro and in vivo effects in some of these mutations. We also show that the histone deacetylase activity of Sir2p is necessary for the proper localiztion of the SIR complex to the telomeres.
منابع مشابه
A unique class of conditional sir2 mutants displays distinct silencing defects in Saccharomyces cerevisiae.
Silencing provides a critical means of repressing transcription through the assembly and modification of chromatin proteins. The NAD(+)-dependent deacetylation of histones by the Sir2p family of proteins lends mechanistic insight into how SIR2 contributes to silencing. Here we describe three locus-specific sir2 mutants that have a spectrum of silencing phenotypes in yeast. These mutants are dep...
متن کاملBudding yeast silencing complexes and regulation of Sir2 activity by protein-protein interactions.
Gene silencing in the budding yeast Saccharomyces cerevisiae requires the enzymatic activity of the Sir2 protein, a highly conserved NAD-dependent deacetylase. In order to study the activity of native Sir2, we purified and characterized two budding yeast Sir2 complexes: the Sir2/Sir4 complex, which mediates silencing at mating-type loci and at telomeres, and the RENT complex, which mediates sil...
متن کاملSir2 Regulates Histone H3 Lysine 9 Methylation and Heterochromatin Assembly in Fission Yeast
Hypoacetylated histones are a hallmark of heterochromatin in organisms ranging from yeast to humans. Histone deacetylation is carried out by both NAD(+)-dependent and NAD(+)-independent enzymes. In the budding yeast Saccharomyces cerevisiae, deacetylation of histones in heterochromatic chromosomal domains requires Sir2, a phylogenetically conserved NAD(+)-dependent deacetylase. In the fission y...
متن کاملThe SUMO E3 ligase Siz2 exerts a locus-dependent effect on gene silencing in Saccharomyces cerevisiae.
In the yeast Saccharomyces cerevisiae, the two silent mating-type loci and subtelomeric regions are subjected to a well-characterized form of gene silencing. Establishment of silencing involves the formation of a distinct chromatin state that is refractory to transcription. This structure is established by the action of silent information regulator proteins (Sir2, Sir3, and Sir4) that bind to n...
متن کاملVariants of the Sir4 Coiled-Coil Domain Improve Binding to Sir3 for Heterochromatin Formation in Saccharomyces cerevisiae
Heterochromatin formation in the yeast Saccharomyces cerevisiae is characterized by the assembly of the Silent Information Regulator (SIR) complex, which consists of the histone deacetylase Sir2 and the structural components Sir3 and Sir4, and binds to unmodified nucleosomes to provide gene silencing. Sir3 contains an AAA+ ATPase-like domain, and mutations in an exposed loop on the surface of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2002